
SAWE Paper No. 3355

Reference Models for

Structural Technology Assessment and Weight Estimation

Jeff Cerro
Zoran Martinovic

Exploration Concepts Branch
NASA Langley Research Center

Lloyd Eldred
Swales Aerospace Corporation

Hampton VA

For Presentation at the
64th International Conference

of the
Society of Allied Weight Engineers, Inc.
Annapolis Maryland 16-18th May, 2005

I Overview

 Previously the Exploration Concepts Branch of NASA Langley Research Center has
developed techniques for automating the preliminary design level of launch vehicle airframe
structural analysis for purposes of enhancing historical regression based mass estimating
relationships ref [1]. This past work was useful and greatly reduced design time, however its
application area was very narrow in terms of being able to handle a large variety in structural and
vehicle general arrangement alternatives. Features of that work such as the utilization of Object
Oriented JAVA Programming and the incorporation of flexible commercial FEA and
commercial structural design software are retained in this continuing work, but a new emphasis
has been placed on making the integrating JAVA modules much more generic. The goal has
been to develop a library of JAVA modules which when placed in the desired sequence facilitate
the automated structural sizing of a greater variety of component and vehicle systems. The finite
element procedures wrapped by JAVA routines now trend towards being more generic in the
sense that the routine inputs are not as much design and FEA program specific as they are design
and FEA process specific. A later goal in this analysis system development would be to arrive at
a working group defined set of JAVA Interface Classes that describe input and output required
for particular stages of analysis of automated structural design. Along with standardized
input/output parameters there would also be a set of standard data processing functions which are
then useful to the structural designer in providing the flexibility required for designing numerous
parts, sub-assemblies, and full vehicle configurations. In JAVA programming terminology these
Class definitions become generic Interfaces which are then implementable at any corporate or
academic organization utilizing internal and possibly proprietary procedures. Model data may be
exchanged between these organizations and will be processable by any of the organizations
which have implemented the defined standard Interface. Similar work is ongoing in the area of
Simulation Based Acquisition (SBA) via the Simulation Interoperability Standards Organization
(SISO) and particularly in the area of integrating distributed simulations by the High Level
Architecture – Commercial off the shelf Simulation Package Interoperation Forum (HLA-
CSPIF) ref [2]. For those more interested in preliminary design in a collaborative environment
the NAVY NAVSEA division has pursued similar themes of modularity and multi-disciplinary
interoperability by utilizing a CORBA and IDL (Interface Definition Language) based approach
to Simulation Based Design (SBD) ref [3]. A quote from reference [3] shows the great utility of
implementing a formal Simulation Based Design approach.

“ High Potential was evidenced by the ability to integrate high-
fidelity modeling and simulation tools to provide insight into
overarching system-level performance attributes and the ability
of the integration process itself to promote informal
collaboration between various domain experts.”

 - - 2

 These too are the features being encouraged and developed within the Exploration
Concepts Branch to enable functionally and organizationally collaborative multidisciplinary
design for the purposes of defining and building vehicle elements which best help us achieve the
nations vision for manned space exploration ref [4].

 Implementation of the analysis approach presented herein also incorporates some newly
developed computer programs. Loft [5], is a program developed to create analysis meshes and
simultaneously define structural element design regions. A simple component defining ASCII
file is read by Loft to begin the design process. HSLoad [6] is a Visual Basic implementation of
the HyperSizer Application Programming Interface, ref [7], which automates the structural
element design process. Details of these two programs and their use are explained in this paper.
 A feature which falls naturally out of the above analysis paradigm is the concept of
“reference models”. The flexibility of the FEA based JAVA processing procedures and
associated process control classes coupled with the general utility of Loft and HSLoad make it
possible to create generic program template files for analysis of components ranging from
something as simple as a stiffened flat panel, to curved panels, fuselage and cryogenic tank
components, flight control surfaces, wings, through full air and space vehicle general
arrangements.

II LOFT: Automated Mesh
Generation

Parametric mesh generation for
stiffened shell aerospace vehicles was
examined for application in an automated
design environment. Schemes using both I-
DEAS [8] parametric object geometries
and simple “program file” script language
driven generators were tried with mixed
success. The critical shortcomings of these
approaches were in mesh generation; I-
DEAS was inconsistent about element
generation ordering and no working
method of automatically labeling elements ba
A conceptual-level finite element model of m
analysis purposes generation of a three dim
bulkheads, and wings did not require a pow
develop a very focused mesh generation co
better. Following the successful use of a pro
stiffened trapezoidal wing, a substantially
conceptual-level finite element mesh for arbit

F
g
i

Loft is the name of this in house d
containing a list of vehicle components and t

 - 2
igure 1. A Single Stage to Orbit vehicle mesh
enerated by Loft. This exploded half view was used to
llustrate the 18 different components in the model.

sed on their location in the vehicle was developed.
ost aerospace vehicles is not complex. For current
ensional FE mesh representing a fuselage, tanks,
erful CAD/CAM program. Thus it was decided to
de that would meet these specialized needs much
totype code that generated the mesh for a rib/spar
 expanded code was developed to generate a
rary aerospace vehicles.
eveloped mesh generator. Loft reads a text file

heir dimensions. It generates an annotated mesh in

-

I-DEAS universal, NASTRAN bulk,
and/or VRML 1.0 file formats. The input
file is easy to read and compact; Figure 1
shows a full single stage to orbit vehicle
model with 18 components including two
frame stiffened fuel tanks, wing, winglet
and vertical tail. This mesh was specified
in less than one hundred lines of text with
each line consisting of a single parameter
name and corresponding value (typically
20 characters or less). This simplicity of
input to complexity of mesh mapping is
possible because the program is very
specialized to these aircraft-like stiffened
skin structures and because there is no
need to specify many dimensions and
positions unless the program default needs
to be overridden.

The simplest geometric entity in Lof
simple curves such as circles, squares, bread
schemes for user definition of these primiti
coordinates, and a complex combination cur
curves. All of these shapes can be stretched
cross section.

Loft then can create a three dimensi
linearly extrude that curve to another curve.
conical thrust structure. Figure 2 illustrates a
compound curves. Note the white lines that
stiffening frames. Loft can alternatively extru
or bulkhead.

A wing object is somewhat more com
digit NACA airfoil, with internal ribs and
provided for partial wing objects representin
cut out) and body flaps. Only trapezoidal
shapes can be built up from trapezoidal sectio

A Loft input deck is a simple text
fragment of the file that created the mesh i
designer specifies the nose of the vehicle firs
sectional shape, length, diameter in the
directions, mesh and sizing density values. (A
analysis a panel is generally made up of m
Then the designer will sequentially specify
aft on the vehicle. Loft will automatically
previous component to size and position the
only has to specify any values that are dif

 - 3
Figure 2. A Stiffened Fuselage Section extruded
between two different User Defined Compound Curves in
Loft.
t is called a “curve”. Loft has a built in library of
boxes, and filleted squares. Loft also supports two

ve shapes: a linear interpolation between specified
ve made up by combining any previously defined

and deformed to produce just about any imaginable

onal object from a curve in two ways. First, it can
 This will create a fuselage section, tank barrel, or
section extruded between two different user defined
indicate the location of beam elements representing
de a curve to a single point to create a nose, dome,

plicated. A wing is extruded based on a desired four
spars and optional carry-through. Support is also
g control surfaces (or wings with a control surface
wing planforms are supported, although complex
ns.
file (see Table 1 for a

n Fig. 1). Generally, the
t giving its name, cross-
vertical and horizontal
t the sizing stage of the
ultiple finite elements).
the components moving
use the settings for the
 next one. The designer
ferent than that default.

Our nose
object dome Nose
curve1 sc
c1_xscale 15.589
c1_yscale 15.589
length -36
taper para
nodes_circ 21
nodes_axial 20
droop line
zdroop 8

Table 1: Loft file data to
create Orbiter Nose

 -

Some axial settings such as length will need to be specified for each component, but
circumferential settings will generally not be changed unless the diameter expands or tapers.

This scheme of default generation has the extremely useful side effect of making the
mesh very robust to changes. If, for instance, the volume of one of the tanks needs to be
increased part way through the analysis, the single line that specifies its barrel length can be
changed. Loft will automatically move all of the later components aft by this change and all
objects will still automatically stitch together correctly and have the same labels.

F
l
e

Loft generates a substantial amount of annotation for each component as it is meshed.
The user has control over much of this annotation. Every element in a component is marked by
the names of its associated physical and material properties. The physical property name starts
with the user specified object name, such
as “FWD LH2 TANK”. In a few cases,
such as a wing object, additional text is
added to the physical property name to
further differentiate the elements. For
wings those text additions are “RIB”,
“SPAR”, “SKIN UPPER” and “SKIN
LOWER”. The names of the element’s
material properties are used to indicate
positions on the object such as “AXIAL 3
CIRC 4” for extruded domes and barrels or
“SB 0 CB 3” for wing panels. In this
shorthand notation, SB corresponds to
“Spanwise Bay”, and CB to “Chordwise
Bay”. These panel markings are used to
control the size of the HyperSizer
“components” discussed later and are
explicitly controlled by the user specifying the
should be noted at this point that the actual va
are not set by Loft. It will save dummy value
defined at the HyperSizer stage discussed belo

In addition FEA entity groups are crea
all of the elements, the nodes along the axi
collect nodes on the carry-through, and nodes
spars. Further, the designer can add the no
specified collections. All of these collections a
to apply loads and boundary conditions to the

Loft has a wide variety of advanced
dimensional translational, rotational, scaling,
support allows for both cloning of componen
single file. For instance, (as illustrated in Fig.
half model of a shuttle-like orbiter, a half exte
used with a few cut, paste, and positioning com
an ascent post SRB separation case, an on-orb

 - - 4
igure 3. A simple representation of a shuttle-like
aunch stack built from a half model orbiter, half model
xternal tank, and single solid-rocket booster.

 component counts they desire in each direction. It
lues for the physical and material property settings
s for these settings. The actual property values are
w.
ted that collect all of the nodes in the component,

s of symmetry, etc. For wings, additional groups
 at the trailing edge and leading edge root and tip
des or elements of any component to arbitrarily
re available as I-DEAS groups. They make it easy

mesh in an automated fashion.
features. These include a large collection of three
and warping features. A large scale cut and paste
ts as well as multiple configuration support in a

 3) a file containing the meshing instructions for a
rnal tank, and a single solid rocket booster can be
mands to generate a full model of a launch stack,

it case, or all three as desired.

The user has a wide variety of options for saving the Loft generated mesh. The output
module for I-DEAS is the most flexible option. The I-DEAS output module writes an ASCII
universal file and supports the changes in the universal file definition for version 7-9 of I-DEAS.
I-DEAS version 11 support is in development, although a version 9 file does get read
successfully. The NASTRAN bulk data file module is less flexible. Node, element, property, and
material cards are written. MSC/PATRAN style comments are used to convey the property
names to the later FEA and sizing stages of the process. The VRML 1.0 output module is an
excellent tool for quick feedback on the generated mesh. Other modules under consideration for
early development include FAST-3D and Lightwave Object formats. The user can use any
combination of these output modules at any point in the mesh generation process. Thus, one
could save a NASTRAN file containing the fuselage, then an I-DEAS 7 file containing the
fuselage and main wing, and finally VRML and I-DEAS 9 files containing the full model.

Loft does have limitations. There is no way to generate meshes for fillets, for strakes, or
other preliminary- or later-stage design features. Wing objects are not automatically attached in a
finite element sense to the fuselage; rigid elements or boundary conditions need to be added
either manually or through algorithm implementation in a controlling program.

Loft is written in standard C. There are executable versions for Windows, UNIX, and
Linux.

III HSLOAD: Automated Structural Element Sizing

Structural component sizing, and thus the basis for mass estimation, is performed using a

Visual Basic program created called HyperSizerLOAD (HSLOAD). At this point in analysis
FEA static solutions have produced elemental loads for a variety of load cases that are thought to
be critical to different portions of the vehicle. The sizing stage calculates the beam and stiffened
panel thicknesses that are required to carry these loads. Finally the gages and material densities
are used to compute a component analysis weight.

Collier Research’s HyperSizer is the core of the sizing stage. HyperSizer is an extremely
powerful tool for this application, with some usability issues for batch analyses that have been
addressed through this use of its user accessible Application Programming Interface (API). This
API was developed under previous NASA funding within the NASA High Performance
Computing and Communications Program, HPCCP [9].

HyperSizer allows the user to select from a very large range of stiffened panel and open
section beam designs. Hundreds of materials are defined in the included database with powerful
tools provided for adding more. Dozens of failure criteria are checked for each structural
concept. A simple fully-stressed design approach would check material strength; HyperSizer also
checks for several types of buckling, crushing of sandwich cores, strain limits if present (in a
composite tank for instance), etc.

The HyperSizer user can select a variety of structural concepts, a list of materials, and a
range of panel and stiffener sizes. The mathematical combination of these discrete options can
produce tens of thousands of candidate designs that need to be tested for failure. HyperSizer sorts
these designs by weight and tests each candidate sequentially to find the lowest weight panel that
will support all of the defined load sets. It is easy on a large vehicle to create a very large design

 - - 5

space that can take unacceptable amounts of CPU time to process. Engineering discretion in
design variable selection applied through the HSLoad program improves this performance.

HyperSizer can load a variety of finite element data formats, including the I-DEAS
universal file. Program logic automatically collects all elements with the same physical and
material properties and combines them into a “component”. All elements in a component will
share the exact same sizing results. Recall that one of the main reasons for using Loft to generate
the finite element mesh was to control the assignment of these properties. The user then collects
components into “groups”. Group members share the same design space: material options, panel
concepts, and design variable limits. But each component in the group may be sized to a different
result within that design space. Typical group design space settings can be saved as templates
and quickly loaded to set up a group’s settings as needed. Another HyperSizer collection is
called an “assembly”. An assembly is an arbitrary, and not necessarily unique, collection of
groups and/or components. Assemblies are primarily used for post-processing purposes such as
reporting the weight of major subsystems made of many panels and beams.

An example will help clarify the HyperSizer terminology. Consider a wing consisting of
ribs, spars, and skin panels. A reasonably dense mesh will easily consist of a thousand elements
or more. Each skin panel (spanning the space between adjacent ribs and spars) is set to be a
“component” consisting of a number of finite elements. For an initial rough sizing run all of
these skin components may be collected into a single “group”. Thus, the entire wing skin would
share the same design space settings, but each skin panel would have its own particular sizing
result. Finally, the groups containing the skin, ribs, and spars may be collected into an
“assembly” to generate a wing subsystem weight.

HyperSizer is typically run interactively and controlled using a graphical user interface.
This interface is not well suited for the batch operation required for the current automation
process, but, there is an alternative execution approach. HyperSizer has a program accessible
API that can be used to control it. This API uses the Microsoft COM standard and requires a
compiler that supports that standard. At the recommendation of the HyperSizer creators, Visual
Basic 6 was used to create a batch control program for HyperSizer. HSLOAD is that in-house
created HyperSizer batch control program. Using instructions it reads from a text input file, it
instructs HyperSizer to load the desired universal file, assign components into groups, load pre-
generated group templates for the sizing variables, perform a sizing solution, and controls the
post-processing analysis of the HyperSizer results.

HSLOAD represents a substantial improvement in efficiency. A very large and detailed
launch vehicle model that took three man years to generate had to be loaded into HyperSizer
several times due to small changes. The HyperSizer setup time was eventually reduced to one
full day. Using HSLOAD, it took a few hours to initially set up the loading instructions in the
text file, then an hour of CPU time to set up the HyperSizer analysis of the model. Small changes
like considering the trade of metal versus composite fuel tanks took minutes to set up.

HyperSizer has some very powerful graphical post processing tools. It can generate full

vehicle plots colored by a very wide variety of solution results. It can also generate extensive
documentation of the results in HTML. But, it has no way of just producing a list of components
that meet some criteria that the engineer may desire.

HSLOAD is again used in the post-processing stage of the process. It uses the COM API
to communicate with HyperSizer and extract a variety of useful information. Some basic items

 - - 6

extracted include total vehicle weight as well as the weight of each assembly. HSLOAD also
generates text lists of every under- and over-designed component in the analysis. Table 2 shows
a partial HSLOAD results file.

A component is considered to have failed or to be under-designed if it has a negative
factor of safety. This may mean that the designer needs to increase the allowable thickness of
that panel, or change its design in another way such as adding more ribs and spars to a wing to
reduce the skin panel size. Since the component names are based on the user’s naming
convention specified at the meshing stage, it is easy to detect a trend that requires a redesign (e.g.
all the root panels on the upper skin of the wing have buckled) or an isolated failure that may
indicate a local spike in the loading.

A panel or beam is considered to be over-designed if the lowest weight design has a positive
factor of safety. This does not necessarily require engineering intervention. But each of these
components represents a possible opportunity to lower the total vehicle weight if their design
limits can be lowered. An isolated over-designed component can probably be ignored, but a
region of such elements may indicate that it would be profitable to redesign that section of the
vehicle (reducing the number of ring frames in a tank for instance).
 In the case shown in Table 2, the file gives unit and total weights for the model then lists
the under- and over-designed components discovered in the analysis. In this case, there were no
failed components and three overdesigned
components. By examining the component
names, it can be seen that all three are on the
root rib of the wing. This can be determined
from the description “RIB” and the panel
coordinates indicating that they are in span-bay
(SB) zero. Here, the user had chosen root
boundary conditions that clamped all root rib
nodes. This resulted in zero internal loading of
the root rib elements and the 100 percent
margin of safety shown in the results file.

Hypersizer Run Summary
UnitWeightShell: 8.315496
UnitWeightBeam: 0
Total Weight: 7105.52

Total failed/underdesigned
components:0

Overdesigned Components:
 BGWING RIB | SB 0 CB 0 MOS = 100
 BGWING RIB | SB 0 CB 1 MOS = 100
 BGWING RIB | SB 0 CB 2 MOS = 100

Total overdesigned components: 3

Total Components in Analysis: 175

Table 2: Partial HSLOAD results file

 It should be noted that each of the
vehicle modifications suggested to deal with
over- and under-designed components can be
accomplished with single line edits of the input
files for either Loft or HSLOAD.

IV JAVA Procedures

 LOFT and HSLOAD control major portions of the automated structural design process.
They are also however under the control of an executive JAVA program which prepares data,
sets up the working directory structure, invokes the commercial FEA application software and
generally controls all of the analysis stages chosen to be implemented for a particular structural
component, element, or vehicle. This executive program also invokes several JAVA utility
functions as required for the problem being defined.

 - - 7

 Figure 4. Expendable Launch Vehicle
 Payload Fairing

 Appendix I shows the listing for a typical one of these control programs called
“elv_plf_3dfem.java”, a contraction which stands for an “expendable launch vehicle payload
fairing modeled with 3d FEA techniques.” The steps of this program will be reviewed later in
this paper, but the general purpose is to execute LOFT for model creation, execute functions
which define loads, boundary conditions and static solution design conditions, execute HSLOAD
for structural sizing, and perform a load-path stiffness to element sizing convergence iteration
between finite element solutions and HyperSizer
element resizing. The fairing component is
analyzed subject to 2 pressure loading conditions
and is shown in Figure 4.

Within the control program
“elv_plf_3dfem” the JAVA Classes UNV and
ModelFile are the means employed to create and
modify FEA data. UNV provides access to an
ASCII file representation of the finite element
data, and ModelFile provides FEA vendor based
script file manipulation capabilities to the actual
IDEAS FEA binary data. In summary ModelFile
allows the user to perform the following generic processes from within the controlling JAVA
software:

• read modify and write FEA data
• manipulate finite element groupings of nodes and elements
• create force, pressure and acceleration boundary conditions, also included is the

capability to create acceleration vector and fluid density defined head pressures
on a partially filled tank.

• create boundary condition restraint data
• combine boundary condition load and restraint data
• Define multiple static solution sets which are the basis for definition of element

internal loads used by the HyperSizer analysis step.
• Perform defined static solutions and export model definition and associated

results for structural sizing

 The terms UNV for universal file, and ModelFile are not generic and come from
terminology associated with the IDEAS simulation package. A large part of the data and
procedure definitions within these class structures however are defined in more generic terms
and it is a further goal to define JAVA procedures whose interface definitions are in terms of non
code dependent finite element data. Within the procedure’s implementation reside specific code
dependent lines of software which perform the desired data manipulations. For example the
Class UNV basically provides back to the JAVA environment data structures which characterize
the following generic finite element entities and procedures:

 nodes - id, coordinate data, global search routines
 elements - connectivity, material and property callout
 props - property type, defining variables

 - - 8

 groups - number of entities in group, associated entity type, and access
 procedures to element and node arrays
 loadsets - load type, number of loads in set, load values, acceleration data
 results - holds element internal loads and associated element ids

 Stepping through Appendix I, program elv_plf_3dfem.java, shows how the use of utility
functions within the UNV and ModelFile classes create and analyze the payload fairing. For
explanation of the process to people unfamiliar with the JAVA language syntax, the stages of
analysis are commented in bold and contained within /* … */ delimiters. This implementation
was done on a personal computer and the first step in the process following the comment /*
Geometry Creation */ executes Loft using a PC batch file process. An existing Loft input is all
that is required at this point in time. After Loft execution, program control transfers to the
procedure “run_all”, where remaining analysis steps are carried out. Within “run_all” we first
create a finite element model inside the IDEAS environment and import the universal file FEA
data created by Loft. The program developer is now free to combine various functions for his
desired loadcase and solution set development. In this instance we first create some groups
which can be used for applying pressure boundary conditions. Along with creation of the group
“pressure_elements” two pressure loadsets are created, one called “maxq” and one called
“meco”. After applied loading a restraint group set of nodes is created, in this instance for all
nodes between 1325 and 1400 inches in the models X direction. Acceleration vector loads folr
the maxq and meco conditions are created and the model is then ready for definition of static
solution boundary condition set creation and solution. Solution results in the creation of element
level internal loads which are used for structural component sizing. After export of model and
results data to an ASCII universal file format, the program is ready to perform structural design
utilizing the HSLoad program. An input file for HSLoad is created and the program is called
using a batch script in the same manner in which Loft was executed. The remaining calls in
elv_plf_3dfem.java perform an iterative analysis between the structural sizing of HyperSizer and
the subsequent updated element property (stiffness) model generated by HyperSizer and used for
re-execution in IDEAS. This stiffness to loadpath convergence is necessary for statically
indeterminate models and is in general a good practice for models of the level of complexity
created by LOFT.
 Procedures used in Appendix I which create element groups, apply boundary conditions
and the like ideally could be defined at an implementation independent generic level such as via
a JAVA Class Interface or even more generically via a code interoperability technique such as
the IEEE 1516 High Level Architecture (HLA) standard ref [10]. With corporate or even
industry standards defined at a high level, a totally interoperable and collaborative design process
would be enabled.

 - - 9

V Reference Models

 The analysis steps shown in Appendix I for sizing a payload fairing represent a generic
process which can be repeated for fairings of different size, aspect ratio, physical construction
technique, and loading definition. The modularity of the procedures permit any or all of the
above modifications to be made rather easily once the original template program is defined. Also
note that new template programs can be made up from the generic modeling and analysis steps
provided by the JAVA ModelFile and UNV classes, the program HSLOAD, and the LOFT
program. Figure 5 shows some other elements which exist in template format and are readily
useable for the study of structural technology, load intensity and component size effects upon
structural unit weight and structural component behavior. Figure 6 shows additional reference
vehicles under development. These models are termed Reference Models because they are meant
to be baseline models which can be studied as is or modified for any of the above reasons. They
are also intended to be analyzable by generic finite element and component sizing techniques
such that if a common set of data and procedural requirements can be defined the analysis steps
are implementable by those who wish to perform the same analyses presented herein, but with
alternative software.

 Flat Panel Fairing Cryogenic Tank Wing/Empennage

 Figure 5 - Typical Reference parts and sub-assemblies

 - - 10

Space Exploration Module Expendable Launch Vehicle

Multi-stage Reusable System Shuttle Derived System

Space Exploration Module Expendable Launch Vehicle

Multi-stage Reusable System Shuttle Derived System

Figure 6 – Reference Vehicles

VI Conclusions

Previous automation techniques for structural analysis and structural mass estimation are

improved upon within this paper. The procedures presented can be utilized over a great variety of
structural component type and vehicle arrangement. Finite element analysis techniques and
commercial structural design software are executed under the control of a central JAVA
procedure which is easily modified when parametric and trade study type work is required. Two
additional computer programs, Loft for conceptual design mesh generation, and HSLoad for
control of the structural sizing process, were created to make the automation process feasible.
The analysis data structure, general finite element data, is of complex enough nature such that
models and data created at this level of analysis can easily become boundary condition data for
more detailed levels of analysis. Simultaneously the Reference Model concept makes available a
model library suitable for rapid analysis of components in the more preliminary stages of design.
It is this moving of model fidelity from later to earlier phases of design which hopes to increase
the sensitivity of system studies to discipline details and thus helps define system architecture

 - - 11

and technology requirements which pay off through the deployment and operational phases of a
systems life cycle.

A key to creating a successful Simulation Based Acquisition, Simulation Based Design
environment for the Government is to have standards defined for the computational work
performed in vehicle design and operational assessment. This paper has shown how the practice
of performing analysis based structural sizing for concept definition studies can be broken into
typical FEA and design steps, and computationally automated. With organizational concurrence
the data and data procedures could be standardized in a higher-level defining standard such as
HLA. With such standards in place multiple organizations could exchange model data and
perform comparative design procedures. Each could be using its own preferred and possibly
proprietary computational procedures. Such “plug-and-play” model exchange capability
encourages broad industry collaboration. Greater knowledge transfer between system producer
and system acquirer permits the acquirer to more quickly define product requirements, and more
quickly enables the producer to create the best system level product designs.

References

[1] Cerro, J. A., Martinovic, Z. N., Su, P., and Eldred L.B.: “Structural Weight Estimation

for Launch Vehicles”, Paper No. 3201, 61st Annual International Conference on Mass
Properties Engineering, Virginia Beach, Virginia, May 18-22, 2002.

[2] Taylor, S.J.E., Gan, B. P., Straßburger S., Verbraeck, A.: “HLA-CSPIF Panel on

Commercial Off-The-Shelf Distributed Simulation”, Proceedings of the 2003 Winter
Simulation Conference, pp 881-887.

[3] Kusmik, W.A.: “Optimization in the Simulations Based Design Environment”, NAVSEA
Division Newport, 1176 Howell Street, Newport, RI 02841.

[4] National Aeronautics and Space Administration: “The Vision for Space Exploration”,

February 2004, http://www.nasa.gov/pdf/55584main_vision_space_exploration-hi-
res.pdf

[5] Eldred L.B.: “Loft, An Automated Mesh Generator For Stiffened Shell Aerospace
Vehicles”, Swales Aerospace Corporation, NASA LaRC SAMS Contract No. NAS1-
00135 03RAA, 5/28/2003.

[6] Eldred L.B.: “HSLoad - Input Deck Documentation”, Swales Aerospace Corporation,

NASA LaRC SAMS Contract No. NAS1-00135 03RAA, 5/28/2003.

[7] HyperSizer, commercial CAE software, available from, Collier Research Co. 45

Diamond Hill Rd. Hampton, VA 23666

 - - 12

http://www.nasa.gov/pdf/55584main_vision_space_exploration-hi-res.pdf
http://www.nasa.gov/pdf/55584main_vision_space_exploration-hi-res.pdf

[8] IDEAS, commercial CAD/CAE software, available from, EDS Co. 5400 Legacy Drive,
Plano, Texas 75024-3199.

[9] Holcomb L.; Smith, P. and Hunter, P.: “NASA High Performance Computing and

Communications Program”, NASA-TM-4653, 1994.

[10] Institute of Electrical and Electronic Engineers: “IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture HLA - Framework and Rules”

 - - 13

Biographies

Jeffrey A. (Jeff) Cerro:
Education: BS Mechanical Engineering, Rochester Institute of Technology – 1978
 MS Mechanical Engineering, Rensselaer Polytechnic Institute – 1981

Mr. Cerro is an Aerospace Technologist in the Exploration Concepts Branch at the NASA
Langley Research Center in Hampton Virginia. He is responsible for space access system
studies and particularly the influence of structural performance in such studies. His current work
centers around analysis of needs for vehicle elements which support NASA’s vision for Space
Exploration.

Prior to his work in the Vehicle Analysis Branch Mr. Cerro was a structural analyst for the
Lockheed-Martin Corporation, where he performed analysis of aircraft and spacecraft structural
components.

Zoran Martinovic:
Education: BS. Mechanical & Aeronautical Engineering,

University of Belgrade, Yugoslavia - 1972
 MS. Aerospace Engineering, Pennsylvania State University – 1979

Ph.D. Aerospace Engineering,
Virginia Polytechnic Institute and State University - 1987

Dr. Martinovic works with the Exploration Concepts Branch at NASA Langley Research Center
and is responsible for structural analyses and trade studies for new concept aerospace vehicles
with emphasis on structural weight estimates and technology assessment. His prior experience
covers a wide range of subjects related to aerospace vehicles structural engineering in industry,
academia and research.

Lloyd B. Eldred:
Education: B.S. Aerospace and Ocean Engineering,
 Virginia Polytechnic Institute and State University - 1986
 M.S. Aerospace Engineering,
 Virginia Polytechnic Institute and State University - 1989
 Ph.D. Aerospace Engineering,
 Virginia Polytechnic Institute and State University - 1993

Dr. Eldred is a Senior Engineer for Swales Aerospace Corporation in Hampton Virginia. His
work at NASA, LaRC has focused on tool development for improving structural weight
estimation of launch vehicles. He has previously worked as a contractor at NASA, Ames
Research Center and at Wright-Patterson AFB. He has just accepted a new position with
Northrup Grumman, Newport News where he will be performing structural analyses on the next
generation aircraft carrier.

 - - 14

Appendix I

JAVA Control Program for Sizing of an ELV Payload Fairing

public class elv_plf_3dfem {
 public Model_File mf;
 public consiz2unv_whole_ms9 cs2unv;
 public String ideas_project;
 public String ideas_mf;
 public String work_dir;

/* constructor */
 public elv_plf_3dfem() {
 try {
 mf = new Model_File();
 cs2unv = new consiz2unv_whole_ms9();
 } //catch (IOException e) {
 //System.out.println("IOexcepted" + e);
 //}
 finally {
 }
 } // end constructor

 public static void main (String args[]) {
 elv_plf_3dfem a = new elv_plf_3dfem();
 a.num_des_solsets=2;

 /* Geometry Creation */
 try {
 ExecDemo1 bat_file = new ExecDemo1();
 bat_file.run_bat_file("F:\\ref_part_elv_fairing\\run_loft.bat","F:\\ref_part_elv_fairing");
 }
 catch (Exception exc1) {
 String err = exc1.toString();
 System.out.println(err);
 }
 a.run_all("cerro", // project, existing
 "F:\\ref_part_elv_fairing\\elv_fairing.mf1", // model file, existing
 "F:\\ref_part_elv_fairing\\", // workdir, existing
 "MarkFairing.unv", // unv (may be existing, will get overwritten)
 "C:\\Program Files\\Microsoft Office\\Office\\EXCEL.EXE"); //excel command
 } // main

 - - 15

 /* most execution stages are within the run_all procedure */
 public void run_all(String ideas_project, String ideas_mf,
 String work_dir, String unv_filename, String xl_cmd) {
 this.ideas_project = ideas_project;
 this.ideas_mf = ideas_mf;
 this.work_dir = work_dir;
 elv_plf_3dfem a = new elv_plf_3dfem();
 String unvfn = work_dir + unv_filename;

 /* create an IDEAS modelfile from the LOFT created universal file */
 a.mf.set_units("inch", work_dir + "setunits.prg");
 a.mf.run_prg(ideas_project, this.ideas_mf, "simulation", "meshing",
 work_dir + "setunits.prg");

 a.mf.import_unv(unvfn, work_dir + "imp_unv.prg");
 a.mf.run_prg(ideas_project, this.ideas_mf, "simulation", "meshing",
 work_dir + "imp_unv.prg");

 /* create group for and apply pressure loading */
 a.mf.create_group("pressure_elements", work_dir + "group_elems.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "group_elems.prg");
 a.mf.add_all_elems_to_group(17, work_dir + "els_to_group.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "els_to_group.prg");

 a.mf.create_appl_press_loadset_v9("maxq", 17,
 -6.18, work_dir + "maxq_pres.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "maxq_pres.prg");

 a.mf.create_appl_press_loadset_v9("meco", 17,
 -.618, work_dir + "meco_pres.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "meco_pres.prg");

 /* create restraint group and add clamped constraint at one end of model */
 a.mf.create_group("clamped_nodes", work_dir + "group_nodes.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "group_nodes.prg");

 try {
 BufferedReader infile = new BufferedReader(new FileReader(unvfn));
 BufferedReader in = new BufferedReader(new InputStreamReader(System.
 in));

 - - 16

 File outputFile = new File(work_dir + "debug_unv.txt");
 FileWriter out = new FileWriter(outputFile);
 unv_ms9 unv_inst = new unv_ms9(infile, out);
 infile.close();
 // add nodes to restraint group
 int group_id = 18;
 int[] res_nodes = unv_inst.nodes.nodes_in_xrange(1325., 1400.);
 a.mf.add_to_group("nodes", res_nodes, group_id, work_dir + "nodes_to_group.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "nodes_to_group.prg");
 // create restraint case for clamp condition
 String[] str = {
 "AF", "YT AT FI"};
 String[] str2 = {
 "CLAMP"};
 a.mf.create_restraint_set("clamp", res_nodes, str2,
 work_dir + "res_set.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "res_set.prg");
 }
 catch (IOException e) {
 System.out.println("IOexcepted" + e);
 }
 /* add acceleration loads */
 // method to apply acceleration to the design condition loadsets
 if (true) { // add accel vectors to loadsets
 // add the appropriate acceleration
 double[][] accel = {
 {-386.4 * 2.3, .0, 386.4 * 2.0}, // maxQ
 {-386.4*6.0, .0, 386.4*0.5} // meco
 };

 double ax, ay, az;
 int no_sets = 2;
 for (int i = 0; i < no_sets; i++) {
 ax = accel[i][0];
 ay = accel[i][1];
 az = accel[i][2];
 int[] ldsetno = {1,2};
 a.mf.add_accel_to_loadset(ldsetno[i], ax, ay, az,
 work_dir + "add_accel.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "add_accel.prg");
 }
 }

 - - 17

 /* create the boundary condition sets for use in HyperSizer */
 int[] ldsetids = {1};
 a.mf.create_bc_set("maxq", 1, ldsetids,
 "clamp", work_dir + "create_bcset.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "create_bcset.prg");
 ldsetids[0]=2;
 a.mf.create_bc_set("meco", 1, ldsetids,
 "clamp", work_dir + "create_bcset2.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "bo",
 work_dir + "create_bcset2.prg");
 /* and solve the above bc sets */
 // solve for each design loadset
 // sol set name, bcset no, runtitle, list fn, prg fn

 a.mf.create_sol_set_solve("maxq", 2, "maxq_run",
 work_dir + "maxq.lis",
 work_dir + "solve.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "MO",
 work_dir + "solve.prg");

 a.mf.create_sol_set_solve("meco", 3, "meco",
 work_dir + "meco.lis",
 work_dir + "solve2.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "MO",
 work_dir + "solve2.prg");

 /* export universal file of model and results for use in HyperSizer, HSLoad */
 a.mf.create_unv_all(unvfn, work_dir + "createunv.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "meshing",
 work_dir + "createunv.prg");

 /* setup and run HSLoad */
 StringTokenizer s = new StringTokenizer(unv_filename, ".");
 String fn_prefix = s.nextToken();
 hs_load b = new hs_load();
 int[] mech_ls_number = {
 1};
 int[] thermal_ls_number = {
 0};
 String[] ls_name = {
 "maxQ"};
 String[] flag = {
 "true"};
 String[] group_name = {

 - - 18

 "mygroup1"};
 String[] family_name = {
 "Sandwich"};
 String[] template_name = {
 "zoran_im7_foam_sandwich"};
 String[] component_match = {
 "nosetip", "nosecone", "barrel", "boattail"};
 b.write_input_file(work_dir + "HSLoad_solve.in",
 "mark_fairing",
 "c:\\program files\\hypersizer",
 "c:\\hypersizerfea",
 "working1_4.0.hdb",
 "solve",
 unvfn,
 unvfn,
 work_dir + fn_prefix + ".pm1",
 1,
 mech_ls_number,
 thermal_ls_number,
 ls_name,
 flag,
 1,
 group_name,
 family_name,
 template_name,
 component_match);
 }
 try {
 ExecDemo1 bat_file = new ExecDemo1();
 bat_file.run_bat_file(work_dir + "run_HSLoad.bat", work_dir);
 }
 catch (Exception exc1) {
 String err = exc1.toString();
 System.out.println(err);
 }
 /* Iterate structural stiffness-loadpath and resizing between hypersizer and FEA

solutions */
 for (int i = 1; i <= 2; i++) {
 System.out.println(" iteration " + i + "\n");
 a.mf.delete_fem("fem_is_item3", work_dir + "del_fem_item3.prg");
 a.mf.run_prg(ideas_project, this.ideas_mf, "simulation", "meshing",
 work_dir + "del_fem_item3.prg");

 a.mf.set_units("inch", work_dir + "a.prg");
 a.mf.run_prg(ideas_project, this.ideas_mf, "simulation", "meshing",

 - - 19

 work_dir + "a.prg");

 a.mf.import_unv(work_dir + "mark_fairing-HS.unv", work_dir + "a.prg");
 a.mf.run_prg(ideas_project, this.ideas_mf, "simulation", "meshing",
 work_dir + "a.prg");

 a.mf.assign_part_material(work_dir + "assign.prg");
 a.mf.run_prg(ideas_project, this.ideas_mf, "simulation", "meshing",
 work_dir + "assign.prg");

 a.mf.run_static_sol(1,"maxq_run",work_dir + "maxq.lis",
 work_dir + "solve1.prg");
 a.mf.run_prg(ideas_project, this.ideas_mf, "simulation", "meshing",
 work_dir + "solve1.prg");

 a.mf.run_static_sol(2,"meco_run",work_dir + "meco.lis",
 work_dir + "solve2.prg");
 a.mf.run_prg(ideas_project, this.ideas_mf, "simulation", "meshing",
 work_dir + "solve2.prg");

 a.mf.create_unv_all(unvfn, work_dir + "createunv.prg");
 a.mf.run_prg(ideas_project, ideas_mf, "simulation", "meshing",
 work_dir + "createunv.prg");
 try {
 ExecDemo1 bat_file = new ExecDemo1();
 bat_file.run_bat_file(work_dir + "run_HSLoad.bat", work_dir);
 java.lang.Runtime rto = java.lang.Runtime.getRuntime();
 String cmd = "copy mark_fairing.hsresult mark_fairing.hsresult" + i;
 String[] cmds = {
 cmd, work_dir};
 Process p1 = rto.exec(cmds);
 p1.waitFor();
 }
 catch (Exception exc1) {
 String err = exc1.toString();
 System.out.println(err);
 }
 } // run_all

} // class

 - - 20

	MS. Aerospace Engineering, Pennsylvania State University – 1
	Virginia Polytechnic Institute and State University - 1987

